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ABSTRACT: Considering the need for knowing the amount of biodiesel in fuels, in order to attend several legislations around
the world, this work aimed to develop a new, rapid, and nondestructive time-domain nuclear magnetic resonance (TD-NMR)-
based method for the biodiesel content determination in diesel−biodiesel blends. Main findings have revealed that both the
transverse relaxation time (T2) and signal areas from relaxation spectra are highly correlated to biodiesel content in the fuel
samples. The highest correlation was reached by applying PLS multivariate regression over T2 decay curve profiles. Therefore,
both univariate and multivariate approaches were able to determine biodiesel content in diesel−biodiesel blends with high
accuracy directly from fuel samples in a simple, fast, and inexpensive way.

■ INTRODUCTION

Diesel fuel is one of the main petroleum fractions, containing
mainly aliphatic hydrocarbons with 30−60 carbons and, in
small proportion, aromatic compounds.1 Diesel is the most
successful fuel worldwide, mainly employed for transportation
by truck and ships, as well as, in power generators, because of
its high energy density and autoignition properties.2 On the
other hand, the instability in the petroleum market, the limited
availability of crude oil, and, mainly, the severe impact on the
environment, including increases in atmospheric CO2 and high
emission of pollutants such as sulfur and nitro compounds,
have stimulated the search for alternative fuels.3,4 In this way,
biodiesel is a relevant alternative to replace fossil fuels in the
world, since their physicochemical properties are very similar to
those of petrodiesel, enabling its use, either neat or blended
with petrodiesel, without demanding any modification on diesel
engines and existent storage and distribution infrastructure.5,6

Biodiesel is essentially composed of fatty acid methyl or ethyl
esters obtained through transesterification processes of
vegetable oils or animal fats with methanol or ethanol.4,7,8

The addition of biodiesel in fossil fuels presents some
important advantages, mostly environmental. This increases
the oxygen content (from fatty acids), resulting in a more
advanced and faster overall combustion event, which leads less
emissions of pollutants, smoke, SOx, and CO.4,5,7,9−12 On the
other hand, NOx emissions are increased by using biodiesel.11,12

Because of that, blends of biodiesel and petrodiesel have
become commercially available all over the world. In the United
States, the use of blends containing 20% (v/v) biodiesel in
petrodiesel (called B20) is usual.13 In the European Union
(EU), which the largest biodiesel producer in the world, the
amount of biodiesel in petrodiesel has gradually increased. The

goal is to reach a B20 blend by 2020.14 In Brazil, the blends are
scheduled to be raised to B10 from the current B7 by 2019.15

Therefore, the need has emerged to determine the amount of
biodiesel present in petrodiesel. For that purpose, several
analytical methods, mostly based on infrared (IR) spectroscopy
in combination with multivariate analysis, have been
developed,13,16−26 which led to the rise of some standard
procedures around the world. In this way, several standard
testing methods are used to determine the biodiesel content in
diesel−biodiesel blends from multiple ranges, for example,
ASTM D7371 (1−20% v/v), EN14078 (0.05−50% v/v), and
NBR 15568 (0.5−30% v/v).27,28

High-resolution nuclear magnetic resonance (NMR) spec-
troscopy is the most versatile and powerful tool that provides a
wide range of information about the system under inves-
tigation. NMR spectroscopy has been successfully used in the
fuel industry, including petroleum well logging and determi-
nation of fuel properties and its chemical composition, as well
as in the quality control of final products.29−33 NMR has also
been used to determine the research octane number (RON)
and motor octane number (MON) in gasoline.34−39 The
suitable performance of NMR spectroscopy in this area can be
justified by the good correlation of NMR data with the physical
and chemical properties of fuels. However, such correlations
were normally reached only with aid of multivariate analysis. In
this way, partial least squares (PLS) analysis has been a very
useful tool in exploring NMR data.40−43 This approach was
used with success to predict the cetane number (CN) on
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petrodiesel.44−48 Regarding the quality control of biodiesel−
petrodiesel blends, some NMR-based multivariate calibration
methods have been developed. The biodiesel content in
petrodiesel could be achieved in a simple and fast way, just
by acquiring 1H NMR spectra directly from the sample and
applying multivariate calibration.49−53 The main advantage of
using NMR is that the measurements can be acquired directly
from the sample, without the need of any laborious, time- and
chemical-consuming sample pretreatment. Moreover, modern
NMR spectrometers can be fully automated, allowing fast data
acquisition and, consequently, the investigation of a large
number of samples in a short time. However, high-resolution
NMR requires the usage of expensive and sophisticated
spectrometers, composed of heavy and bulk high-field super-
conducting magnets that limit the in situ applications. Thus,
NMR is rarely used in the routine analysis when compared to
ultraviolet−visible light (UV-Vis) and infrared (IR) techniques.
On the other hand, low-resolution or time-domain nuclear

magnetic resonance (TD-NMR) is based on less-expensive,
small, and robust benchtop permanent low-field magnets,
which significantly reduces the overall system and running
costs. Because of the low magnetic field applied, this tool is also
called low-field NMR. TD-NMR has been proven to be an
excellent alternative to many traditional methods, because of its
distinctive characteristics, such as convenience, rapidity, high
correlation, reproducibility, preservation of sample integrity, the
ability to perform direct measurements without any sample
pretreatment, and the possibility for online and in situ
application.54−56 For these reasons, TD-NMR-based methods
have been widely used in industry for many years for qualitative
and quantitative analyses.57 However, more applications still
being discovered, replacing laborious, time- and chemical-
consuming methods, mainly in the analysis of food-
stuffs.55,56,58−60

In TD-NMR, the analyses are performed mainly by using the
differences between the longitudinal relaxation time (T1) or
transverse relaxation time (T2) (relaxometry) or self-diffusion
(D, diffusometry) of the sample components. Indeed, T2 values
are normally measured instead of T1 values. Such choice is
based on the time required to obtain the data. To measure the
T1 values, it is necessary to wait a time period of 5T1 between
the pulses, which makes the experiment quite long. In contrast,
for the acquisition of T2 values, this procedure is dispensable. In
this way, the Carr−Purcell−Meiboom−Gill (CPMG) is the
best spin−echo pulse sequence to measure the transverse
relaxation times. The pulse sequence starts with a 90x° pulse
excitation, followed by a train of refocusing 180y° pulses; in
other words, a 90° phase shift from the excitation pulse, with a
delay between the refocusing pulses of 2τ. The phase shift
between the first excitation pulse and the train of refocusing
pulses was amended in Carr−Purcell pulse sequence61 by
Meiboom−Gill62 in order to avoid cumulative errors due to
deviation from the 180° pulses. Such a change made the CPMG
pulse sequence quite robust and insensitive to errors in
refocusing pulses.
TD-NMR also has been used as logging sensors in several

of f line and online analyses in whole fuel industries, and in
laboratories to obtain several physical and chemistry properties
of fuels, such as oil viscosity, diffusivity, rock porosity, and
many others.63−67 In addition, TD-NMR, combined with
chemometric analysis, has the ability to simultaneously estimate
several quality parameters of fuels, such as sulfur content,
cetane index, flash point, density, and temperature achieved

during distillation to obtain 50% of distilled (T50) directly in
commercial diesel samples.68 Regarding the biodiesel industry,
TD-NMR (along with the CPMG pulse sequence) has been
widely used, mainly in raw-material quality control and for
monitoring the transesterification process. In this way, it has
been used to determine the oil content and its quality directly
from oilseeds, providing important information for the
biodiesel production.69,70 Similar to that observed in high-
resolution NMR, most of the TD-NMR-based methods are also
followed by multivariate calibration. In this context, the main
advantage of chemometric tools is that the analysis can be
performed over the entire decay profile and not only in single
values such as T1 and T2 relaxation time, thus avoiding
subjectivity when using exponential fitting procedures, which
led to improvement in the accuracy.
The goal of this work was to develop a TD-NMR-based

multivariate calibration method for determining the biodiesel
content in diesel−biodiesel blends through CPMG pulse
sequence in a simple and fast way, directly from the fuel.
Therefore, adding more TD-NMR applications that could help
the improvement of the biofuels industry, from the raw material
to the final products.

■ EXPERIMENTAL SECTION
Samples. Methyl biodiesel from soybean, palm, and olive oils, as

well as ethyl biodiesel from soybean oil samples, were provided by
Centro de Energias−TECPAR, while petrodiesel samples containing
up to 50 and 500 ppm of sulfur were kindly supplied by
UNIBRASPE−Brasileira de Petroĺeo S.A. All samples were stored at
20 °C and 30% humidity, in a climate-controlled room, prior to
analysis.

Diesel−biodiesel blends were prepared by mixing each biodiesel
sample with petrodiesel in order to cover the full range, from 0 to
100% (v/v) of biodiesel (B0−B100). Petrodiesel containing biodiesel
is designed as Bx, where x indicates the volume percentage of biodiesel
in the blend. In this light, B2 is a biodiesel−petrodiesel blend
containing 2% (v/v) biodiesel.7 Fourteen (14) fuel blends (B0, B2, B4,
B6, B8, B10, B15, B20, B30, B40, B50, B60, B80, and B100) were
prepared, in triplicate, for the method development (i.e., for calibration
models). A second set of blends (B3, B5, B9, B12, B25, B45, and B70),
in duplicate, were used for external validation.

TD-NMR Measurements. TD-NMR measurements were acquired
directly from fuel samples on a Bruker Model mq-20 NMR
spectrometer, operating at 0.47 T with a permanent magnet, observing
the 1H nucleus at 19.95 MHz. The spectrometer was equipped with a
single-channel 18-mm-diameter probe, without temperature control.
The magnet temperature, including probe, was kept constant at 37.00
± 0.01 °C. T2 decay curves were acquired using a CPMG pulse
sequence that consisted of a 90x° pulse, followed by a train of 180y°
refocusing pulses, separated by an echo time of 500 μs (τ of 250 μs), 4
scans, 1K echoes, and a recycle delay of 10 s. Before TD-NMR
analyses, the samples were placed in a thermal box (37.0 ± 0.5 °C), at
least for 30 min, in order to reach the thermal equilibrium with the
NMR spectrometer (37.00 °C). Then, 3.0 mL of fuel was transferred
into 18-mm NMR tubes and submitted to TD-NMR analysis.
Measurements were performed three times in order to improve
accuracy.

Reference Data. The biodiesel contents in diesel fuel were also
determined via Fourier transform infrared (FT-IR) spectroscopy,
according to Brazilian standard method ABNT NBR 15568:2008.71

The FT-IR analyses were performed directly from fuel samples on a
MIDAC Fox8100 FT-IR spectrometer that was equipped with a fixed
volume ZnSe-ATR cell sampling accessory and a DTGS detector. The
spectra were recorded at 20.0 ± 2 °C over the middle infrared range
(4000−650 cm−1) with 36 scans and a spectral resolution of 4 cm−1,
with aid of PETRO-QUANT software. Then, 2.0 mL of fuel were
required for each measurement and the background spectra were
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obtained using an empty cell. The biodiesel content was determined
with aid of the GRAMS/32 PLSplus/IQ v4.05 software.
Univariate and Multivariate Analysis of TD-NMR Data. First,

relaxation data were explored via principal component analysis (PCA)
in order to evaluate the reproducibility of the methodology, followed
by univariate and multivariate approaches. For univariate analysis, the
T2 relaxation curves were fitted by biexponential functions available on
Origin 9.0 software in order to obtain the T2 and coefficient values.
Furthermore, the Inverse Laplace Transform (ILT) was applied over
the T2 decay curves in order to obtain the continuous distribution of
T2 (i.e., relaxation spectra) and respective signal areas, with aid of an
homemade ILT algorithm based on the Tikhonov regularization.72 For
multivariate analysis, the T2 decay curves containing 1K data points
per sample were investigated using PLS multivariate calibration pattern
recognition techniques with the aid of the PLS toolbox in MATLAB
software. Prior to PLS analysis, decay curves were normalized and
mean-centered, followed by Savitzky−Golay smoothing (3 points, 1
order); preprocessing and normalization (min-max vector) were
applied to the NMR dataset. The cross-validation analyses were
performed using leave-one-out cross-validation (which is a process in
which each sample is predicted by the remaining samples and the
procedure is repeated until each sample was been estimated) to
determine the optimal number of latent variables (LVs) to be included
in each model, to minimize the root-mean-square error of cross-
validation (RMSECV). To develop the prediction models, datasets
comprised of the training set (75%) and the remaining set (25%) was
used for validation. The performance of models were evaluated by
correlating predict values with those true values, while predictive
abilities of the multivariate models were assessed by using an external
validation set of blends (see the “Samples” subsection).

■ RESULTS AND DISCUSSION
Most of the TD-NMR spectrometers (magnet and probe)
operate at warm temperatures in order to stabilize the magnetic
field, such as the one used in this work, which operated at 37
°C. On the other hand, samples to be investigated normally are
found at room temperature. Therefore, initially PCA analyses
were performed over T2 relaxation curves from some diesel−
biodiesel fuel samples at room temperature. These analyses had
the intent of evaluating if the samples could be directly inserted
into the NMR probe, in order to acquire NMR data, or if it
would be necessary to increase the sample temperature to 37
°C prior to NMR analysis. PCA from the T2 decay curves
obtained from diesel−biodiesel blends samples, including B0
(pure diesel) and B100 (pure biodiesel), showed a systematic
dispersion between the replicates for all samples (see Figure S1
in the Supporting Information). This found is probably due to
the effects of small changes in sample temperature during the
analysis.
The relaxation spectra obtained by the application of ILT

over T2 decay curves also showed systematic drifts in the
spectral profiles of fuel samples when they were sequentially
inserted into the magnet (Figure 1). In other words, different
T2 times were observed when repeating the measurements. On
the other hand, when the samples were previously kept at 37
°C inside a thermic box at least for 30 min, no changes between
replicates were observed in relaxation spectra (Figure 1). This
finding revealed that T2 times (i.e., T2 decay curves) are greatly
affected by small changes in the sample temperature. Therefore,
temperature control is essential to avoid misestimation. In this
work, all diesel−biodiesel samples were kept at 37 °C for 30
min prior to TD-NMR measurements.
The T2 decay curves, acquired with aid of CPMG pulse

sequence,62 of biodiesel samples (obtained from methyl and
ethyl trans esterification of vegetable oils from different sources,
such as soybean, olive, and palm) were quite similar to those of

diesel (see Figure S2 in the Supporting Information). Equally,
relaxation spectra from ILT of T2 decay curves showed similar
spectral profiles (Figure 2). The biodiesel samples presented a

high intense signal at ∼0.6 s and a small one above 1.1 s. The
petrodiesel samples also showed two very similar T2
distributions on the relaxation spectra, although the second
signal was more intense than those observed for biodiesel
(Figure 2). Therefore, according to these findings, one would
expect determining the biodiesel content in the diesel−
biodiesel blends to be quite difficult.

Univariate Analysis. Although both diesel and biodiesel
samples showed very similar T2 decay curves (see Figure S2 in
the Supporting Information) and T2 distribution times in
relaxation spectra (Figure 2), it would be expected to signal
areas to represent the amounts of biodiesel and diesel. Thus,
univariate analyses of diesel−biodiesel blends were performed
using T2 times and respective coefficients obtained by

Figure 1. Transverse relaxation (T2) spectra obtained from B4 diesel−
biodiesel blend without and after preheating at 37 °C for 30 min. The
same was observed for all other blends (data not shown).

Figure 2. Representative T2 relaxation spectra of some biodiesel (ethyl
and methyl soybean, and methyl palm) and diesel (S50 and S500, with
sulfur limit of 50 and 500 ppm, respectively) samples. The numbers
given in the graphic represent the relative areas (a.u.).
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biexponential fitting of the T2 decay curves, as well as the
respective signal areas from relaxation spectra.
In this light, considering the T2 times, a linear correlation

between shorter T2 components and biodiesel content was
achieved (Figure 3), mainly for those blends containing high

biodiesel amounts (i.e., over than B20). However, for those
with lower biodiesel contents, a small dispersion of T2 times
was observed. On the other hand, long T2 components showed
an exponential correlation with a high degree of correlation (R2

= 0.99), even for those samples with lower biodiesel content
blends (Figure 3). The best correlation was observed when
using methyl biodiesel from soybean, which represents most
biodiesel plants in Brazil.
Considering the signal area for the shorter T2 components in

the relaxation spectra, a high degree of correlation (R2 = 0.98)
and low slope (S = 0.49) were found, showing that the signal
area was quite sensitive to small changes in biodiesel content
(Figure 3). Therefore, the higher the biodiesel content, the
higher the signal area of shorter T2 components. Similarly, a
high degree of correlation (R2 = 0.99) was observed between
the area from the signal of long T2 components and the diesel
content, presenting a low slope (S = 0.50). Therefore, the
higher the diesel content, the higher the signal area of long T2
components. In this light, the signal area of the first signal (T2 <
1 s) in relaxation spectra directly represents the biodiesel
content, while the signal area for the second signal (T2 > 1 s)
indicates the amount of petrodiesel (Figure 3). The great
advantage in using signal areas from relaxation spectra, instead
of T2 values, is that they are not affected by small changes in
signal position, as a consequence of changes in the sample
temperature (Figure 1). This finding supports that TD-NMR
can be used in a simple way by using CPMG,62 which is a
robust and well-established pulse sequence, to evaluate the
biodiesel content in diesel−biodiesel blends.
Similar results were found by taking into account the

coefficients from biexponential fits over T2 decay curves (data
not shown). However, lower degrees of correlation were
observed for those samples with low biodiesel content (i.e.,

<B10). Besides, the validation processes, by using the external
validation set of blends, revealed a high prediction error for
lower biodiesel content samples. On the other hand, if the
expected biodiesel content is >B10, the calibration curves
obtained with T2 times, fit coefficient values, or signal areas, can
be used to determine the biodiesel content, with reasonable
accuracy.
These findings are in agreement with other methods

described in the literature for biodiesel content determinations.
The ASTM D7371, D7861 and D7467 are used to investigate
blends from B1−B20, B1−B30 and B6−B20, respectively.
While the EN 14078 range A and B are used for blends from
B0.05−B3 and B3−B20, respectively.27 In summary, univariate
analyses are able to determine, with high accuracy, the biodiesel
content by means of TD-NMR in diesel−biodiesel blends in a
single and fast way for samples with high biodiesel content
(>B20).

Multivariate Analysis. Being able to determine the
biodiesel content in diesel−biodiesel blends based on univariate
data, normally, the use of discrete values has lower predicting
power than those performed with multivariate data such as
PLS,73 once they consider all the information present in T2
decay curves and not only a single information. The advantages
in using PLS regression, compared to fitting procedures, resides
in the fact that it is not necessary to assign the T2 values to
diesel or biodiesel: neither is biased by the operator and it can
be easily automated.
In this light, several PLS models were obtained according to

the different sources of vegetable oil and different sulfur
contents in diesel. In the attempt to develop a more accurate
and robust method, multivariate analysis by PLS regression
were performed over entire T2 decay curves profile of Bx
samples. Since soybean is one of the main sources of vegetable
oil and the methyl transesterification is the methodology mostly
used for biodiesel production, this system was exhaustively
investigated.
PLS regression models showed small RMSECV and high R2

values when using ∼7 latent variables (Figure 4). When using
4−7 latent variables, no significant reduction was observed in
the RMSECV value, although by using 5 latent variables, it was
possible to achieve a high percentage of explained variance
(99.97%). This number was adequate to avoid overestimation
in the predictions of the constructed models. Thereby, robust
multivariate regression models could be achieved (Table 1).
Regarding the preprocessing employed, the application of
smoothing with a spectral window of three points and the
normalization allowed more information to be extracted from
the data, yielding in lower RMSECV value and a high R2 value.
In addition, the data were not autoscaled once the predictive
ability of the mean-centered was better for the investigations.
The ability of predicting the biodiesel content in diesel−

biodiesel blends was evaluated with external validation sets, in
which lower prediction errors were observed, except for those
diesel−biodiesel blends with low biodiesel content. The
reference method based on FT-IR and multivariate analysis
still being more precise than NMR. However, TD-NMR
spectrometers can be used in several other applications from
raw material to the quality control of final products.63−70

Moreover, considering that most legislations around the world
use diesel−biodiesel blends of >B10,10,14,15 TD-NMR can be an
alternative. One great advantage of TD-NMR-based methods is
that it can be applied directly to fuel pipelines without the need
of sample collecting (i.e., any direct contact with samples).

Figure 3. Plots of biodiesel content versus biexponential fitting of T2
decay curves and signal areas from relaxation spectra for methyl
soybean biodiesel in diesel blends.
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Besides, standards and sample derivatization are not required
and the equipment requires only a small power supply to work
and can be fully automated and operated online.
Therefore, by using PLS regression models over T2 decay

curves, a high correlation (R2 > 0.99) was observed between the
predicted biodiesel content and the real ones (Figure 4). These
findings show that PLS-based multivariate regression models
have good predictive abilities and can be used for determining
the biodiesel contents in diesel−biodiesel blends with high
accuracy.
Similar results were found by replacing the T2 decay curves

for the relaxation spectra on PLS multivariate regression
models (see Figure S3 in the Supporting Information).
However, higher prediction errors (RMSECV) and smaller
correlation coefficients (R2) were achieved.

■ CONCLUSION
This work showed that TD-NMR can be used to determine
biodiesel content in diesel−biodiesel blends with high accuracy.

The biodiesel content could be assessed in a simple and fast
way by acquiring T2 decay curves with aid of CPMG pulse
sequence directly from the fuel without any sample treatment
and plotting data against univariate or multivariate calibration
curves. A high correlation was obtained between experimental
values and real ones. Therefore, benchtop low-field NMR
spectrometers can be a versatile tool for determining biodiesel
content, mainly because of its mobility, which permits in situ
analysis and the low cost of the equipment. Moreover, low-field
or TD-NMR spectrometers can be used in several other key
points in diesel and biodiesel plants, from the oil seed to
commercial fuel.
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